elliptic_nome_by_epsilon_29_horner Function

private elemental function elliptic_nome_by_epsilon_29_horner(pw01_eps, pw04_eps, pre_step) result(q)

Calculate the following for the given and :

Arguments

Type IntentOptional Attributes Name
real(kind=real32), intent(in) :: pw01_eps

auxiliary parameter

real(kind=real32), intent(in) :: pw04_eps

real(kind=real32), intent(in) :: pre_step

Return Value real(kind=real32)

elliptic nome


Calls

proc~~elliptic_nome_by_epsilon_29_horner~~CallsGraph proc~elliptic_nome_by_epsilon_29_horner elliptic_nome_by_epsilon_29_horner proc~elliptic_nome_by_epsilon_25_horner elliptic_nome_by_epsilon_25_horner proc~elliptic_nome_by_epsilon_29_horner->proc~elliptic_nome_by_epsilon_25_horner proc~elliptic_nome_by_epsilon_21_horner elliptic_nome_by_epsilon_21_horner proc~elliptic_nome_by_epsilon_25_horner->proc~elliptic_nome_by_epsilon_21_horner proc~elliptic_nome_by_epsilon_17_horner elliptic_nome_by_epsilon_17_horner proc~elliptic_nome_by_epsilon_21_horner->proc~elliptic_nome_by_epsilon_17_horner proc~elliptic_nome_by_epsilon_13_horner elliptic_nome_by_epsilon_13_horner proc~elliptic_nome_by_epsilon_17_horner->proc~elliptic_nome_by_epsilon_13_horner proc~elliptic_nome_by_epsilon_09_horner elliptic_nome_by_epsilon_09_horner proc~elliptic_nome_by_epsilon_13_horner->proc~elliptic_nome_by_epsilon_09_horner proc~elliptic_nome_by_epsilon_05_horner elliptic_nome_by_epsilon_05_horner proc~elliptic_nome_by_epsilon_09_horner->proc~elliptic_nome_by_epsilon_05_horner

Called by

proc~~elliptic_nome_by_epsilon_29_horner~~CalledByGraph proc~elliptic_nome_by_epsilon_29_horner elliptic_nome_by_epsilon_29_horner proc~elliptic_nome_by_epsilon_29 elliptic_nome_by_epsilon_29 proc~elliptic_nome_by_epsilon_29->proc~elliptic_nome_by_epsilon_29_horner proc~elliptic_nome_by_epsilon_33_horner elliptic_nome_by_epsilon_33_horner proc~elliptic_nome_by_epsilon_33_horner->proc~elliptic_nome_by_epsilon_29_horner proc~elliptic_nome_29_real32 elliptic_nome_29_real32 proc~elliptic_nome_29_real32->proc~elliptic_nome_by_epsilon_29 proc~elliptic_nome_auto_real32 elliptic_nome_auto_real32 proc~elliptic_nome_auto_real32->proc~elliptic_nome_by_epsilon_29 proc~elliptic_nome_by_epsilon_33 elliptic_nome_by_epsilon_33 proc~elliptic_nome_auto_real32->proc~elliptic_nome_by_epsilon_33 proc~elliptic_nome_by_epsilon_33->proc~elliptic_nome_by_epsilon_33_horner interface~elliptic_nome_29 elliptic_nome_29 interface~elliptic_nome_29->proc~elliptic_nome_29_real32 interface~elliptic_nome_auto elliptic_nome_auto interface~elliptic_nome_auto->proc~elliptic_nome_auto_real32 proc~elliptic_nome_33_real32 elliptic_nome_33_real32 proc~elliptic_nome_33_real32->proc~elliptic_nome_by_epsilon_33 interface~elliptic_nome_33 elliptic_nome_33 interface~elliptic_nome_33->proc~elliptic_nome_33_real32

Source Code

    elemental function elliptic_nome_by_epsilon_29_horner(pw01_eps, pw04_eps, pre_step) result(q)
        !! Calculate the following for the given \( \varepsilon \) and \( { \varepsilon }^{ 4 } \):
        !! $$
        !! \begin{aligned}
        !! \varepsilon \cdot {}
        !! & (      1 + { \varepsilon }^{ 4 } \cdot \\
        !! & (      2 + { \varepsilon }^{ 4 } \cdot \\
        !! & (     15 + { \varepsilon }^{ 4 } \cdot \\
        !! & (    150 + { \varepsilon }^{ 4 } \cdot \\
        !! & (   1707 + { \varepsilon }^{ 4 } \cdot \\
        !! & (  20910 + { \varepsilon }^{ 4 } \cdot \\
        !! & ( 268616 + { \varepsilon }^{ 4 } \cdot \texttt{pre_step} ) \\
        !! & ) \\
        !! & ) \\
        !! & ) \\
        !! & ) \\
        !! & ) \\
        !! & ) \\
        !! \end{aligned}
        !! $$

        real(real32), intent(in) :: pw01_eps !! auxiliary parameter \( \varepsilon \)

        real(real32), intent(in) :: pw04_eps !! \( { \varepsilon }^{ 4 } \)

        real(real32), intent(in) :: pre_step



        real(real32) :: q !! elliptic nome \( q \)



        q = &!
            elliptic_nome_by_epsilon_25_horner(&!
                pw01_eps = pw01_eps                   , &!
                pw04_eps = pw04_eps                   , &!
                pre_step = pw04_eps * pre_step + c_25   &!
            )

    end function elliptic_nome_by_epsilon_29_horner