Calculate the following for the given and :
| Type | Intent | Optional | Attributes | Name | ||
|---|---|---|---|---|---|---|
| real(kind=real64), | intent(in) | :: | pw01_eps |
auxiliary parameter |
||
| real(kind=real64), | intent(in) | :: | pw04_eps |
|
||
| real(kind=real64), | intent(in) | :: | pre_step |
elliptic nome
elemental function elliptic_nome_by_epsilon_13_horner(pw01_eps, pw04_eps, pre_step) result(q) !! Calculate the following for the given \( \varepsilon \) and \( { \varepsilon }^{ 4 } \): !! $$ !! \begin{aligned} !! \varepsilon \cdot {} !! & ( 1 + { \varepsilon }^{ 4 } \cdot \\ !! & ( 2 + { \varepsilon }^{ 4 } \cdot \\ !! & ( 15 + { \varepsilon }^{ 4 } \cdot \texttt{pre_step} ) \\ !! & ) \\ !! & ) \\ !! \end{aligned} !! $$ real(real64), intent(in) :: pw01_eps !! auxiliary parameter \( \varepsilon \) real(real64), intent(in) :: pw04_eps !! \( { \varepsilon }^{ 4 } \) real(real64), intent(in) :: pre_step real(real64) :: q !! elliptic nome \( q \) q = &! elliptic_nome_by_epsilon_09_horner(&! pw01_eps = pw01_eps , &! pw04_eps = pw04_eps , &! pre_step = pw04_eps * pre_step + c_09 &! ) end function elliptic_nome_by_epsilon_13_horner